• Profile
Close

Study finds potential treatment for early diabetic retinopathy

ANI Apr 28, 2020

Using a mouse model, researchers have identified a potential treatment candidate for early diabetic retinopathy which has anti-inflammatory and neuroprotective effects.

For our comprehensive coverage and latest updates on COVID-19 click here.

Diabetic retinopathy is one of the main vascular complications of type 2 diabetes and the most common cause of visual deterioration in adults. Published in The American Journal of Pathology, the team reports on the efficacy of a possible treatment candidate that showed anti-inflammatory and neuroprotective effects on the retina and optic nerve head in early type 2 diabetic retinopathy using a diabetic mouse model.

Diabetic retinopathy is caused by damage to the blood vessels of the light-sensitive tissue at the back of the eye. The cause is usually attributed to high blood sugar (hyperglycemia), but several studies have shown that inflammation is also an important factor in the progression of the disorder. "Inflammation causes neurodegeneration as well as microvascular abnormalities in the retina," explained lead investigator Jin A. Choi, PhD, Department of Ophthalmology and Visual Science, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea. "Diabetic retinal neurodegeneration can occur before the onset of clinical diabetic retinal microvascular abnormalities. Therefore, therapeutics for neurodegeneration may provide a novel interventional strategy in the window period between the diagnosis of type 2 diabetes and the onset of clinically manifested diabetic retinopathy."

Investigators analysed and compared the anti-inflammatory and neuroprotective effects of the glucagon-like peptide-1 receptor agonist (GLP-1RA) lixisenatide in the retina and the optic nerve head with those of insulin in a mouse model of type 2 diabetes. They divided diabetic mice into three groups; GLP-1RA (LIX); insulin (INS) with controlled hyperglycemia based on the glucose concentration of LIX; and a control group (D-CON). Nondiabetic control mice were also characterized for comparison.

After eight weeks of treatment, neuroinflammation caused by type 2 diabetes was significantly reduced in GLP-1RA-treated retinas and optic nerve heads compared with untreated or even insulin-treated retinas of early-type 2 diabetic mice, showing that the outcomes are independent of the glucose-lowering effect of GLP-1RA. "This study can provide a possible therapeutic strategy to prevent visual deterioration by using GLP-1RA in early type 2 diabetic retinopathy," noted first author Yeon Woong Chung, MD, Department of Ophthalmology and Visual Science, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.

"GLP-1RA significantly suppressed neuroinflammation in the early diabetic retinopathy, whereas insulin had little or no suppressive effect in this study." "Retinal ganglion cells start to die even before clinical changes such as hemorrhages in diabetic retinopathy occur," commented Dr. Choi. "Thus, for better visual prognosis, we need to focus on the treatment of the retina in early type 2 diabetes before the clinical onset of diabetic retinopathy," Dr. Choi added.

Only Doctors with an M3 India account can read this article. Sign up for free or login with your existing account.
4 reasons why Doctors love M3 India
  • Exclusive Write-ups & Webinars by KOLs

  • Nonloggedininfinity icon
    Daily Quiz by specialty
  • Nonloggedinlock icon
    Paid Market Research Surveys
  • Case discussions, News & Journals' summaries
Sign-up / Log In
x
M3 app logo
Choose easy access to M3 India from your mobile!


M3 instruc arrow
Add M3 India to your Home screen
Tap  Chrome menu  and select "Add to Home screen" to pin the M3 India App to your Home screen
Okay