• Profile
Close

UTHealth research: Misfolded form of pancreatic protein could induce type 2 diabetes symptoms

University of Texas Health Science Center at Houston News Aug 09, 2017

The symptoms of type 2 diabetes can be induced by a misfolded form of a pancreatic protein and possibly be transmitted by a mechanism similar to prion diseases such as Creutzfeldt–Jakob disease or bovine spongiform encephalopathy, according to researchers from McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth).

The findings were reported in a paper published in The Journal of Experimental Medicine.

More than 90 percent of type 2 diabetes patients show abnormal protein deposits in their pancreatic islets that are aggregates of a misfolded form of a protein called islet amyloid polypeptide (IAPP). The precise role of these IAPP aggregates in type 2 diabetes is unclear, but they may damage and kill the pancreatic beta cells that secrete insulin in response to elevated blood glucose levels. In this respect, type 2 diabetes could be similar to other diseases caused by misfolded protein aggregates, such as Alzheimer’s disease, Parkinson’s disease and prion disorders.

“Until now, this concept has not been considered,” said Claudio Soto, PhD, senior author, professor in the Department of Neurology and the director of the George and Cynthia Mitchell Center for Alzheimer’s Disease and Related Brain Disorders at UTHealth. “Our data therefore opens up an entirely new area of research with profound implications for public health. This prion–like mechanism may play a key role in the spreading of the pathology from cell to cell or islet to islet during the progression of type 2 diabetes.”

A key feature of these diseases is that a small number of misfolded protein aggregates can serve as “seeds” that induce the misfolding of additional proteins until they form large aggregates capable of damaging the cells. In the case of prion diseases, these seeds can even be transmitted from one individual to another but Soto said they don’t know yet if that is the case in diabetes.

Soto and his colleagues found that injecting small amounts of misfolded IAPP aggregates induced the formation of protein deposits in the pancreases of mice expressing human IAPP. Within weeks, these mice developed several symptoms associated with type 2 diabetes, including a loss of pancreatic beta cells and elevated blood glucose levels. Small amounts of misfolded IAPP could also induce the formation and accumulation of large IAPP aggregates in pancreatic islets isolated from healthy human donors.

Misfolded IAPP can therefore induce protein aggregation and disease similarly to infectious prion proteins, but Soto said that it is much too soon to conclude that type 2 diabetes can be transmitted between individuals.

“Considering the experimental nature of the models and conditions utilized in this study, the results should not be extrapolated to conclude that type 2 diabetes is a transmissible disease in humans without additional studies,” Soto said.
Go to Original
Only Doctors with an M3 India account can read this article. Sign up for free or login with your existing account.
4 reasons why Doctors love M3 India
  • Exclusive Write-ups & Webinars by KOLs

  • Nonloggedininfinity icon
    Daily Quiz by specialty
  • Nonloggedinlock icon
    Paid Market Research Surveys
  • Case discussions, News & Journals' summaries
Sign-up / Log In
x
M3 app logo
Choose easy access to M3 India from your mobile!


M3 instruc arrow
Add M3 India to your Home screen
Tap  Chrome menu  and select "Add to Home screen" to pin the M3 India App to your Home screen
Okay