• Profile
Close

Pancreatic islet cells in animals can ‘flip’ their fate to produce insulin

Stanford School of Medicine News Feb 25, 2017

Alpha cells can convert to insulin–producing beta cells in mice when just two genes are blocked, a new Stanford study shows. A similar mechanism may occur in people with diabetes.

Alpha cells in the pancreas can be induced in living mice to quickly and efficiently become insulin–producing beta cells when the expression of just two genes is blocked, according to a study led by researchers at the Stanford University School of Medicine.

Studies of human pancreases from diabetic cadaver donors suggest that the alpha cells’ “career change” also occurs naturally in diabetic humans, but on a much smaller and slower scale. The research suggests that scientists may one day be able to take advantage of this natural flexibility in cell fate to coax alpha cells to convert to beta cells in humans to alleviate the symptoms of diabetes.

“It is important to carefully evaluate any and all potential sources of new beta cells for people with diabetes,” said Seung Kim, MD, PhD, professor of developmental biology and of medicine. “Now we’ve discovered what keeps an alpha cell as an alpha cell, and found a way to efficiently convert them in living animals into cells that are nearly indistinguishable from beta cells. It’s very exciting.”

Kim is the senior author of the study, which was published online Feb. 16 in the journal Cell Metabolism. Postdoctoral scholar Harini Chakravarthy, PhD, is the lead author.

“Transdifferentiation of alpha cells into insulin–producing beta cells is a very attractive therapeutic approach for restoring beta cell function in established Type 1 diabetes,” said Andrew Rakeman, PhD, the director of discovery research at JDRF, an organization that funds research into Type 1 diabetes. “By identifying the pathways regulating alpha to beta cell conversion and showing that these same mechanisms are active in human islets from patients with Type 1 diabetes, Chakravarthy and her colleagues have made an important step toward realizing the therapeutic potential of alpha cell transdifferentiation.”
Go to Original
Only Doctors with an M3 India account can read this article. Sign up for free or login with your existing account.
4 reasons why Doctors love M3 India
  • Exclusive Write-ups & Webinars by KOLs

  • Nonloggedininfinity icon
    Daily Quiz by specialty
  • Nonloggedinlock icon
    Paid Market Research Surveys
  • Case discussions, News & Journals' summaries
Sign-up / Log In
x
M3 app logo
Choose easy access to M3 India from your mobile!


M3 instruc arrow
Add M3 India to your Home screen
Tap  Chrome menu  and select "Add to Home screen" to pin the M3 India App to your Home screen
Okay