• Profile
Close

Gene discovery could prevent onset of muscular dystrophy

The Walter and Eliza Hall Institute of Medical Research News Feb 17, 2017

A genetic change discovered in babies born without a nose could help to prevent a debilitating and incurable form of muscular dystrophy that affects teenagers and adults.

Australian scientists were part of an international research team that discovered how mutations in a gene called SMCHD1 can cause a rare syndrome called bosma arhinia microphthalmia syndrome (BAMS), in which the nose fails to form during embryonic development.

The researchers made the connection that the same gene, SMCHD1, is also faulty in people with an inherited form of muscular dystrophy called facioscapulohumeral muscular dystrophy type 2 (FSHD2). This finding brings new hope for the potential prevention of FSHD2, an incurable condition that causes muscle wasting in teenagers and young adults.

In research published in the journal Nature Genetics, Walter and Eliza Hall Institute researchers Dr Kelan Chen, Associate Professor Marnie Blewitt, Dr James Murphy, Ms Tamara Beck and Ms Alexandra Gurzau and their international collaborators compared the genetic changes in SMCHD1 causing BAMS and FSHD.

Dr Chen said that the research built on the team’s earlier discovery of how FSHD2 is caused when SMCHD1 is defective and no longer functions as it should.

“We found that FSHD2 is caused when the protein SMCHD1 is damaged and can no longer function normally,” she said. “We were amazed to discover that in children with BAMS the opposite happens – the nose fails to develop in instances where SMCHD1 is activated.

“This is really exciting because it gives us clues about how to design medicines that boost SMCHD1’s activity to protect the body from the development of FSHD2,” Dr Chen said.

Associate Professor Blewitt said that the team had already taken the first step towards developing medicines that could halt the progression of FSHD2 with the support of a grant from the FSHD–Global Research Foundation.

“We hope that this medicine could be used to treat people who know that they carry a defective form of SMCHD1, before the muscle wasting commences,” she said. “FSHD2 does not commonly cause symptoms until gene carriers are teenagers or young adults, so there is a very good opportunity to intervene.

“This approach is also relevant to FSHD type 1 (FSHD1) patients, as defective SMCHD1 is associated with a more severe disease suggesting that boosting SMCHD1 could treat all sufferers of FSHD1 and FSHD2. We are hopeful that our discovery could lead to the development of therapies for FSHD and perhaps even prevention of a currently untreatable disease,” she said.
Go to Original
Only Doctors with an M3 India account can read this article. Sign up for free or login with your existing account.
4 reasons why Doctors love M3 India
  • Exclusive Write-ups & Webinars by KOLs

  • Nonloggedininfinity icon
    Daily Quiz by specialty
  • Nonloggedinlock icon
    Paid Market Research Surveys
  • Case discussions, News & Journals' summaries
Sign-up / Log In
x
M3 app logo
Choose easy access to M3 India from your mobile!


M3 instruc arrow
Add M3 India to your Home screen
Tap  Chrome menu  and select "Add to Home screen" to pin the M3 India App to your Home screen
Okay