• Profile
Close

Discovery of snail genome to advance schistosomiasis research

George Washington School of Medicine and Health Sciences News Jul 08, 2017

An international team of researchers, led by University of New Mexico Associate Professor Coenraad Adema, is now one step closer to eliminating a deadly parasitic disease.

New research highlighting a previously unknown genome in the Biomphalaria snail, a known transmitter of the Schistosoma mansoni (S. mansoni) parasite, may explain why this particular snail is such a suitable host for S. mansoni. The discovery, said research team member Mathilde “Matty” Knight, PhD, adjunct professor of microbiology, immunology, and tropical medicine at the George Washington University School of Medicine and Health Sciences, could offer insight into how the parasite can be stopped.

S. mansoni is a shared parasite in humans and the Biomphalaria snail. It spreads schistosomiasis, an infectious, parasitic disease that can lead to cancer, chronic infertility, and female genital schistosomiasis, exposing people to HIV. Over the course of the parasite’s life cycle, it reproduces asexually within the host snail before being released into freshwater rivers and streams, where it comes in contact with humans. Once in the body, the parasite burrows into the area around the intestines it reproduces and lays its eggs. The larvae from the eggs are released back into freshwater in either feces as S. mansoni, or urine as S. hematobium, and again find their way to the snail to repeat the cycle.

There are a variety of snail species capable of serving as a secondary host for the parasite, but the Biomphalaria snail is the most suitable. Additionally, as global warming continues, the snails and the parasites they carry are on the move. “This snail is native to Brazil,” explained Knight, “but in 2015, a case of schistosomiasis was diagnosed in France. They found that people in Corsica were infected with a parasite that is also found in West Africa.”

As it stands, there is only one drug treatment, praziquantel, available for schistosomiasis. The medication, however, does not provide enough peace of mind, explained Knight. Like other drugs for chronic diseases, such as malaria, the parasite can build up a resistance to praziquantel, rendering it ineffective with repeated use.

Knight’s research suggests that the best way to eliminate the parasite, is to target S. mansoni in the snails and cut off its asexual development, effectively ending the life cycle.

The research article, "Whole genome analysis of a schistosomiasis–transmitting freshwater snail," was published in the journal Nature Communications.
Go to Original
Only Doctors with an M3 India account can read this article. Sign up for free or login with your existing account.
4 reasons why Doctors love M3 India
  • Exclusive Write-ups & Webinars by KOLs

  • Nonloggedininfinity icon
    Daily Quiz by specialty
  • Nonloggedinlock icon
    Paid Market Research Surveys
  • Case discussions, News & Journals' summaries
Sign-up / Log In
x
M3 app logo
Choose easy access to M3 India from your mobile!


M3 instruc arrow
Add M3 India to your Home screen
Tap  Chrome menu  and select "Add to Home screen" to pin the M3 India App to your Home screen
Okay